
This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Synthesis and Characterization of Dichlorotin(IV)trithiophosphates and Their Adducts with Nitrogen Donor Bases

Umesh N. Tripathi^a; Deepak K. Sharma^a School of Studies in Chemistry, Vikram University, Ujjain, India

To cite this Article Tripathi, Umesh N. and Sharma, Deepak K.(2005) 'Synthesis and Characterization of Dichlorotin(IV)trithiophosphates and Their Adducts with Nitrogen Donor Bases', Phosphorus, Sulfur, and Silicon and the Related Elements, 180:9,2163-2178

To link to this Article: DOI: 10.1080/104265090917709 URL: http://dx.doi.org/10.1080/104265090917709

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur, and Silicon, 180:2163-2178, 2005

Copyright © Taylor & Francis Inc. ISSN: 1042-6507 print / 1563-5325 online

DOI: 10.1080/104265090917709

Synthesis and Characterization of Dichlorotin(IV)trithiophosphates and Their Adducts with Nitrogen Donor Bases

Umesh N. Tripathi Deepak K. Sharma

School of Studies in Chemistry, Vikram University, Ujjain, India

Dichlorotin(IV)trithiophosphates $[(RO)P(S)S_2]SnCl_2$ were prepared by the reaction of methanolic solution of $SnCl_4$ and dipotassium salt of trithiophosphates in a 1:1 molar ratio and their adducts $[(RO)P(S)S_2]SnCl_2N_2C_{12}H_8$ and $[(RO)P(S)S_2]SnCl_2N_2C_{10}H_8$ were prepared by the reaction of methanolic solution of $[(RO)P(S)S_2]SnCl_2$ and N-donor bases in a 1:1 molar ratio. These newly synthesised derivatives have been characterized by elemental analysis; molecular weight measurements; and IR, ^{13}C , ^{31}p and ^{119}Sn NMR spectral studies. Coordination number of four and six was suggested for dichlorotin (IV)trithiophosphates and their adducts with N-donor bases respectively.

Keywords Phosphorotrithioate; tin(IV)

INTRODUCTION

In the recent years, considerable interest has been evinced in the chemistry of metallic moieties bonded with sulfur ligands such as thiolates, dithiolates, 1 thio β -diketonates, 2 dithiocarbamates, and O,O'-alkylene dithiophosphates. 3 -5 Some mono di- and tri-organo tin(IV) derivatives of diakyl dithiophosphates have been synthesised and characterized by 13 C, 31 P, and 119 Sn NMR and mossbauer spectral studies. The 119 Sn NMR chemical shifts and $[^1J(^{119}Sn-^{13}C)]$ and $[^2J(^{119}Sn-^{1}H)]$ of tri-organo tin(IV) dialkyl dithiophosphates are consistent with tetrahedral geometry and four coordinated Sn, although a mossbauer study indicates five coordinated tin in solid state. These studies also reveal that in mono and diorgano tin(IV) dithiophosphates, a Sn atom is weakly coordinated to a ligand. 6 -7 Organic trithiophosphates esters have been

Received August 19, 2004; accepted November 7, 2004.

We are thankful to the CDRI, Lucknow, NCL Pune, RSIC Banglore, and USIC Dend University for element and spectra analysis of the newly synthesized compunds.

Address correspondence to Umesh N. Tripathi, School of Studies in Chemistry, Vikram University, Ujjain (M.P.) 456010, India. E-mail: un_tripathi@yahoo.com

used as defoliants, ⁸ insecticides, ^{8–9} and nematodicidal ⁹ and inhibitors ¹⁰ of steel corrosion. Potassium trithiophosphates exist in two isomeric forms.

$$[(RO)P(S)S_2]K_2 \Leftrightarrow [(RS)P(O)S_2]K_2$$

The persual of literature revealed only two publications on the metallic ester of trithiophosphoric acids. ^{11–12} Trithiophosphates of the tin element have received no attention to the best of our knowledge. Hence, it was thought worthwhile to study the trithiophosphates of dichlorotin(IV) and their adducts with nitrogen-donor bases.

EXPERIMENTAL

Dipotassium salt of O-alkyl, O-cycloalkyl, and O-aryl trithiophosphates were prepared by reaction of the requisite anhydrous alcohol with P_2S_5 and triethylamine in a 1:3:3 molar ratio respectively, in anhydrous benzene. The reaction mixture was stirred for 30 min on a water bath. After stirring, salt was precipitated out. All chemicals were of A.R. grade and were used after the drying process. The derivatives described in the present article were synthesised by the following general routes.

Synthesis of [(RO)P(S)S₂]SnCl₂

A methanolic solution (15 mL) of tetrachlorotin(IV) and methanolic solution of dipotassium salt of trithiophosphates were mixed and refluxed for 10–12 h. The reaction was carried out in a 1:1 molar ratio. After refluxing, the solid KCl was precipitated out. Insolubles were filtered off and the product was obtained from the filtrate by removal of volatilesa under reduced pressure. The complexes numbers 1–10 were prepared by the same procedure. The analytical results are summarized in Table I.

Synthesis of [(RO)P(S)S₂]SnCl₂N₂C₁₂H₈ and [(RO)P(S)S₂]SnCl₂N₂C₁₀H₈

A methanolic solution (5 mL) of dichlorotin(IV)trithiophosphates and methanolic solution of 1,10-phenanthroline were mixed and stirred for 5–6 h. The reaction was carried out in a 1:1 molar ratio. After stirring, the methanol was removed under vacuum and yellow adducts were obtained. The adducts numbers 10–20 were prepared by this same procedure. The adducts with 2,2'-bipyridyl (21–30) were prepared by this same procedure. The analytical results are summarized in Tables II and III, respectively.

TABLE I Synthetic and Analytical Data for $[(RO)P(S)S_2]SnCl_2$

		Reactants (g)	Molar	$\mathbf{Product}\left(arphi ight)$	Yield	Mol.Wt.	·	Analysis	Analysis (%) found/(calcd.)	/(calcd.)	
S. no.	SnCl_4	$[(\mathrm{RO})\mathrm{P}(\mathrm{S})\mathrm{S}_2]\mathrm{K}_2$	ratio	$[(RO)P(S)S_2]SnCl_2$	(%)	tound/ (calcd.)	С	Н	S	Cl	Sn
Ţ.	.75	$[(\mathrm{CH}_3)\mathrm{P}(\mathrm{S})\mathrm{S}_2]\mathrm{K}_2$	1:1	$[(\mathrm{CH_3})\mathrm{P}(\mathrm{S})\mathrm{S_2}]\mathrm{SnCl_2}$	95	341.19	3.16	0.58	27.38	20.14	33.87
		89.0		.95		(347.78)	(3.45)	(0.86)	(27.66)	(20.38)	(34.12)
73	.70	$[(C_2H_5)P(S)S_2]K_2$	1:1	$[(\mathrm{C_2H_5})\mathrm{P(S)S_2}]\mathrm{SnCl_2}$	06	354.78	6.38	1.11	26.23	19.29	32.58
		0.72		.87		(361.80)	(6.63)	(1.39)	(26.58)	(19.59)	(32.80)
69	99.	$[n(C_3H_7)P(S)S_2]K_2$	1:1	$[n(C_3H_7)P(S)S_2]SnCl_2$	85	370.55	9.32	1.57	25.24	18.57	31.29
		0.76		.80		(375.83)	(9.58)	(1.87)	(25.59)	(18.86)	(31.58)
4.	99.	$[\mathrm{i}(\mathrm{C}_3\mathrm{H}_7)\mathrm{P}(\mathrm{S})\mathrm{S}_2]\mathrm{K}_2$	1:1	$[i(C_3H_7)P(S)S_2]SnCl_2$	06	369.50	9.30	1.59	25.20	18.56	31.28
		0.76		.85		(375.83)	(9.58)	(1.87)	(25.59)	(18.86)	(31.58)
5.	.65	$[\mathrm{n}(\mathrm{C_4H_9})\mathrm{P}(\mathrm{S})\mathrm{S}_2]\mathrm{K}_2$	1:1	$[n(C_4H_9)P(S)S_2]SnCl_2$	92	382.23	12.01	2.17	24.39	17.89	30.19
		0.80		.92		(389.86)	(12.32)	(2.32)	(24.67)	(18.18)	(30.44)
9.	.65	$[\mathrm{s}(\mathrm{C_4H_9})\mathrm{P}(\mathrm{S})\mathrm{S}_2]\mathrm{K}_2$	1:1	$[s(C_4H_9)P(S)S_2]SnCl_2$	90	383.48	12.01	2.18	24.36	17.88	30.19
		0.80		.87		(389.86)	(12.32)	(2.32)	(24.67)	(18.18)	(30.44)
7.	.65	$[\mathrm{i}(\mathrm{C_4H_9})\mathrm{P}(\mathrm{S})\mathrm{S}_2]\mathrm{K}_2$	1:1	$[\mathrm{i}(\mathrm{C_4H_9})\mathrm{P}(\mathrm{S})\mathrm{S_2}]\mathrm{SnCl_2}$	85	382.44	12.02	2.14	24.34	17.86	30.18
		0.80		.82		(389.86)	(12.32)	(2.32)	(24.67)	(18.18)	(30.44)
œ	.61	$[i(C_5H_{11})P(S)S_2]K_2$	1:1	$[\mathrm{i}(\mathrm{C}_5\mathrm{H}_{11})\mathrm{P}(\mathrm{S})\mathrm{S}_2]\mathrm{SnCl}_2$	06	398.21	14.56	2.46	23.50	17.26	29.10
		0.84		.85		(403.81)	(14.87)	(2.74)	(23.82)	(17.55)	(29.39)
6	.57	$[(C_6H_{11})P(S)S_2]K_2$	1:1	$[(\mathrm{C}_6\mathrm{H}_{11})\mathrm{P}(\mathrm{S})\mathrm{S}_2]\mathrm{SnCl}_2$	92	410.01	17.04	2.31	22.86	16.88	28.29
		0.87		98.		(415.90)	(17.32)	(2.66)	(23.13)	(16.04)	(28.53)
10.	.59	$[(C_6H_5)P(S)S_2]K_2$	1:1	$[(\mathrm{C_6H_5})\mathrm{P(S)S_2}]\mathrm{SnCl_2}$	06	402.27	17.28	1.10	23.18	17.10	28.64
		0.85		.83		(409.85)	(17.58)	(1.22)	(23.47)	(17.30)	(28.95)
											I

TABLE II Synthetic and Analytical Data for $[(RO)P(S)S_2]SnCl_2.C_{12}H_8N_2$

		Reactants (g)	Molar	Product (in g) Λ	Yield	Mol.Wt.	An	alysis ((%) fou:	Analysis (%) found/(calcd.)	1.)	
S. no.	S. no. $C_{12}H_8N_2$	$[(\mathrm{RO})\mathrm{P}(\mathrm{S})\mathrm{S}_2]\mathrm{SnCl}_2$	ratio	$[(RO)P(S)S_2]SnCl_2.C_{12}H_8N_2$		tound/ (calcd.)	С	Н	N	\mathbf{s}	Cl	$_{ m Sn}$
1	.52	$[(\mathrm{CH_3O})\mathrm{P(S)S_2}]\mathrm{SnCl_2}$	1:1	$[(CH_3O)P(S)S]$	66	521.11 29.30 1.82	29.30	1.82	5.10	18.18	13.38	22.40
2.	.52	$^{1.00}_{ m IC_2H_5)P(S)S_2]SnCl_2}_{ m 1.04}$	1:1	$[({ m C_2H_5}){ m P(S)S_2}]{ m SnCl_2}.{ m C_{12}H_8N_2} \ 1.53$	86	(927.99) (23.91) (2.09) (9.50) (16.21) (15.42) (22.41) (23.42) (23.79) (29.84) (2.24) (2.96) (2.96) (2.96) (2.96) (2.96) (2.96) (2.96) (2.96) (2.96) (2.96) (2.96)	(29.97) 29.84 (31.02)	(2.09) (2.24)	(5.30) 4.90 (5.16)	17.68 (17.74)	12.98 13.08)	(22.41) (21.79)
က်	.52	$[{ m n}({ m C}_3{ m H}_7){ m P}({ m S}){ m S}_2]{ m S}{ m n}{ m C}l_2 \ 1.08$	1:1	$[n(C_3H_7)P(S)]$	97	549.47 32.19 2.49 4.87 (556.04) (32.40) (2.71) (5.03)	32.19 (32.40)	2.49 (2.71)	4.87		12.64 12.75)	21.28 (21.34)
4.	.52	$[i(C_3H_7)P(S)S_2]SnCl_2$ 1.08	1:1	$[i(C_3H_7)P(S)S_2]SnCl_2.C_{12}H_8N_2$ 1.58	66	550.57 32.18 2.48 4.89 (556.04) (32.40) (2.71) (5.03)	32.18 (32.40)	2.48 (2.71)	4.89 (5.03)	17.21 (17.30)	12.64 (12.75)	21.29 (21.34)
5.	.52	$[{\rm n}({\rm C_4H_9}){\rm P(S)S_2]SnCl_2}\\1.12$	1:1	$[n(C_4H_9)P(S)S_2]SnCl_2.C_{12}H_8N_2\\1.61$	86	563.15 33.48 2.87 4.68 16.79 12.31 (570.07) (33.71) (3.00) (4.91) (16.87) (12.43)	33.48 (33.71)	2.87	4.68	16.79	12.31 (12.43)	20.78 (20.82)
.9	.52	$[s(C_4H_9)P(S)S_2]SnCl_2$	1:1	$[s(C_4H_9)P(S)S_2]SnCl_2.C_{12}H_8N_2$ 1.62	66	56225 33.49 2.86 4.66 16.78 12.30 570.07) (33.71) (3.00) (4.91) (16.87) (12.43)	33.49	2.86	4.66	16.78	12.30	20.76
7.	.52	$[i(C_4H_9)P(S)S_2]SnCl_2$ 1.12	1:1	$[i(C_4H_9)P(S)S_2]SnCl_2.C_{12}H_8N_2$ 1.59	97	563.52 33.48 2.84 4.68 16.79 12.38 (570.07) (33.71) (3.00) (4.91) (16.87) (12.43)	33.48	2.84	4.68	16.79	12.38	20.75 (20.82)
φ.	.52	$[i(C_5H_{11})P(S)S_2]SnCl_2\\1.16$	1:1	$[i(C_5H_{11})P(S)S_2]SnCl_2.C_{12}H_8N_2\\1.61$	96	578.02 34.64 (584.02) (34.96)	34.64 (34.96)	3.00	4.50 (4.79)	3.00 4.50 16.40 12.04 (3.27) (4.79) (16.47) (12.14)	12.04 (12.14)	20.28
6	.52	$[(C_6H_{11})P(S)S_2]SnCl_2 1.20$	1:1	$[(C_6H_{11})P(S)S_2]SnCl_2.C_{12}H_8N_2 \\ 1.68$	86	591.93 36.01 3.01 (596.10) (36.26) (3.21)	36.01	3.01	4.46 (4.69)	3.01 4.46 16.08 (3.21) (4.69) (16.13)	11.78 (11.89)	19.74 (19.89)
10.	.52	$[(C_6H_5)P(S)S_2]SnCl_2 = 1.18$	1:1	$[(C_6H_5)P(S)S_2]SnCl_2.C_{12}H_8N_2\\1.65$	97	583.19 36.38 2.04 4.48 16.13 11.98 20.01 (590.06) (36.63) (2.22) (4.74) (16.30) (12.01) (20.11	36.38	2.04 (2.22)	4.48 (4.74) (16.13	11.98 (12.01)	20.01 (20.11)

TABLE III Synthetic and Analytical Data for $[(R0)P(S)S_2]SnCl_2.C_{10}H_8N_2$

		Reactants (g)	Molar	Product (in g)	Vield	Mol.Wt.	An	alysis (noj (%)	Analysis (%) found/(calcd.)	J.)	
S. no.	S. no. C ₁₀ H ₈ N ₂	[(RO)P(S)S ₂]SnCl ₂	ratio	[(RO)P(S)S ₂]SnCl ₂ ,C ₁₀ H ₈ N ₂	(%)	found/ (calcd.)	C	Н	z	\mathbf{x}	Cl	$_{ m Sn}$
ij	rċ	$[(CH_3O)P(S)S_2]SnCl_2$	1:1	$[(CH_3O)P(S)S_2]SnCl_2.C_{10}H_8N_2$	86	496.19 26.00 1.92 5.23 (503 oz) (36 91) (9 19) (5 55)	26.00	1.92	5.23 (5.55)	19.04	13.88 23.51	23.51
5	πċ	$[({ m C_2H_5}){ m P(S)S_2}]{ m SnCl_2} \ { m 1.15}$	1:1	$[({ m C_2H_5}){ m P(S)S_2}]{ m SnCl_2}.{ m C_{10}H_8N_2}$	26	512.87	27.58	2.30	5.16		13.41	22.80 22.80
65	ī.	$[\mathrm{n}(\mathrm{C}_3\mathrm{H}_7)\mathrm{P}(\mathrm{S})\mathrm{S}_2]\mathrm{SnCl}_2$	1:1	$[{ m n}({ m C}_3{ m H}_7){ m P}({ m S}){ m S}_2]{ m SnCl}_2.{ m C}_{10}{ m H}_8{ m N}_2$	66	526.55	29.12	2.58	4.92		13.10	(22.31)
4	τö	1.20 [i(C ₃ H ₇)P(S)S ₂ SnCl ₂	1:1	1.68 [i(C ₃ H ₇)P(S)S ₂ SnCl ₂ C ₁₀ H ₈ N ₂	66	$\begin{array}{ccc} (532.02) & (29.17) \\ 525.54 & 29.10 \end{array}$	(29.17) 29.10	(2.84) 2.59	(2.84) (5.26) 2.59 4.90	(18.08) 18.00	(13.32) 13.10	(22.30) 22.29
		1.20		1.68		(532.02)	(29.34)	(2.84)	(2.84) (5.26)	(18.08)	(13.32)	(22.30)
ī.	rċ	$[\mathrm{n}(\mathrm{C_4H_9})\mathrm{P}(\mathrm{S})\mathrm{S_2}]\mathrm{SnCl_2}$	1:1	$[n(C_4H_9)P(S)S_2]SnCl_2.C_{10}H_8N_2$	86	538.23	30.44	2.89	4.89	17.58	12.67	21.70
		1.24		1.71		(546.05) (30.79)	(30.79)	(3.13)	(3.13) (5.13)	(17.61)	(12.98)	(21.73)
9	τċ	$[s(C_4H_9)P(S)S_2]SnCl_2$	1:1	$[\mathrm{s}(\mathrm{C}_4\mathrm{H}_9)\mathrm{P}(\mathrm{S})\mathrm{S}_2]\mathrm{Sn}\mathrm{Cl}_2.\mathrm{C}_{10}\mathrm{H}_8\mathrm{N}_2$	26	539.32	30.49	2.86	4.88	17.58	12.68	21.65
		1.24		1.69		(546.05)	(3079)	(3.13)	(5.13)	(17.61)	(12.98)	(21.73)
7.	τċ	$[\mathrm{i}(\mathrm{C_4H_9})\mathrm{P}(\mathrm{S})\mathrm{S_2}]\mathrm{SnCl_2}$	1:1	$[i(C_4H_9)P(S)S_2]SnCl_2.C_{10}H_8N_2$	96	539.40	30.42	2.88	4.86	17.59	12.60	21.69
		1.24		1.67		(546.05)	(30.79)	(3.13)	(5.13)	(17.61)	(12.98)	(21.73)
œ	τċ	$[\mathrm{i}(\mathrm{C}_5\mathrm{H}_{11})\mathrm{P}(\mathrm{S})\mathrm{S}_2]\mathrm{SnCl}_2$	1:1	$[i(C_5H_{11})P(S)S_2]SnCl_2.C_{10}H_8N_2$	26	552.21	31.86	3.20	4.76	17.04	12.38	21.06
		1.29		1.73		(560.00	(32.17)	(3.41)	(5.00)	(17.17)	(12.66)	(21.19)
6	τċ	$[(\mathrm{C}_6\mathrm{H}_{11})\mathrm{P}(\mathrm{S})\mathrm{S}_2]\mathrm{SnCl}_2$	1:1	$[(C_6H_{11})P(S)S_2]SnCl_2.C_{10}H_8N_2$	86	566.01	33.25	3.18	4.52	16.76	12.08	20.69
		1.33		1.79		(572.09)	(33.59)	(3.34)	(4.89)	(16.81)	(12.39)	(20.74)
10.	ιċ	$[(\mathrm{C_6H_5})\mathrm{P(S)S_2}]\mathrm{SnCl_2}$	1:1	$[(C_6H_5)P(S)S_2]SnCl_2.C_{10}H_8N_2$	26	558.27	33.60	2.10	4.60	16.84	12.29	20.86
		1.31		1.75		$(566.04)\ (33.95)\ (2.31)\ (4.94)\ (16.99)$	(33.95)	(2.31)	(4.94)	(16.99)	(12.52)	(20.96)

MEASUREMENTS

IR spectra were recorded in nujol mulls using Csl cells on a Perkin Elmer 577 spectrometer. In the range 4000–200 cm⁻¹, ¹³C NMR, ³¹P NMR, and ¹¹⁹Sn NMR spectra of these derivatives have been recorded in CDCl₃ on a Bruker DRX-300 spectrometer using TMS, H₃PO₄, and tetramethyltin standards, respectively. Molecular weight were measured on a Knauer Vapour Pressure Osmometer in CHCl₃ at 45°C. Elemental analysis for Sn, Cl, and S were carried out by the standards procedure. ¹³ Carbon, hydrogen, and nitrogen were estimated by Coleman C.H.N. analyzers.

RESULT AND DISCUSSION

Dichlorotin(IV)trithiophosphates are yellow, solid, and sparingly soluble in common organic (benzene, dichloromethane, chloroform etc.) and coordinating (DMF, DMSO, THF, etc.) solvents. The complexes are unstable at room temperature and tend to decompose even under a closed environment. Decomposition is rather slow when these compounds are stored in a dry atmosphere at low temperature. Decomposition is marked by the color change from yellow to brown. The molecular weight measurements indicate a monomerio nature of these compounds in a dilute chloroform solution at 45° C.

IR Spectral Studies

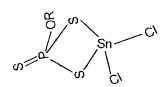
In the IR spectrum the bands observed in the region 1034–1056 and 800–828 cm⁻¹ have been assigned to $\nu[(P)$ –O–C] and $\nu[P$ –O–(C)], respectively. The $\nu[P=S]$ mode may be characterized by the presence of a band in the region 644–652 cm⁻¹ which is quite similar to the ligand's P=S stretchining mode, indicating the bidentate nature of trithiophosphate ligand; this is also showing that there is no interaction of P=S to the metal. The band present in the region 629–646 cm⁻¹ may be ascribed to $\nu[P-S]$ stretching mode. Appearance of a new band (in comparison to a free ligand) in the region 358–370 cm⁻¹ indicates the formation of a $\nu[Sn-S]$ bond. The $\nu[Sn-Cl]$ bond band was found in the region 340–360 cm⁻¹. The IR spectral data are summarized in Table IV.

NMR Spectral Studies

The ¹³C resonance for the carbon atom of the P—O—C group appears as a doublet due to coupling with ³¹P nuclei. In the proton-decoupled ³¹P NMR spectra, only one resonance for each compound in the range

TABLE IV IR Spectral Data (cm^{-1}) for $[(RO)P(S)S_2]SnCl_2$

S. no.	Compound	ν[(P)—0—C]	ν[P—0—(C)]	ν[P=S]	ν[P—S]	ν [Sn—S]	ν[Sn—C]	$\nu[\mathrm{Sn}\mathrm{Cl}]$
1.	$[{ m MeO}){ m P(S)S_2}]{ m SnCl_2}$	1034(s)	800(s)	(8)029	629(m)	360(w)	622(m)	340(w)
2.	$[({ m EtO}){ m P(S)S}_2]{ m SnCl}_2$	1046(s)	810(s)	649(s)	632(m)	363(w)	626(m)	342(w)
	$[(\mathrm{Pr^nO})\mathrm{P(S)S_2}]\mathrm{SnCl_2}$	1045(s)	812(s)	651(s)	635(m)	361(w)	624(m)	344(w)
4.	$[(\mathrm{Pr^iO})\ \mathrm{P(S)S_2}]\mathrm{SnCl_2}$	1044(s)	808(s)	650(s)	630(m)	358(w)	634(m)	343(w)
5.	$[(\mathrm{Bu^nO})\mathrm{P}(\mathrm{S})\mathrm{S}_2]\mathrm{SnCl}_2$	1052(s)	818(s)	645(s)	642(m)	366(w)	636(m)	345(w)
9.	$[(\mathrm{Bu^sO})\mathrm{P}(\mathrm{S})\mathrm{S}_2]\mathrm{SnCl}_2$	1048(s)	814(s)	643(s)	637(m)	362(w)	630(m)	348(w)
7.	$[(\mathrm{Bu^iO})\mathrm{P(S)S_2}]\mathrm{SnCl_2}$	1050(s)	815(s)	644(s)	638(m)	364(w)	632(m)	349(w)
œ	$[(\mathrm{Am^iO})\mathrm{P(S)S_2}]\mathrm{SnCl_2}$	1056(s)	828(s)	652(s)	646(m)	370(w)	648(m)	346(w)
9.	$[(C.h.O)P(S)S_2]SnCl_2$	1055(s)	824(s)	647(s)	640(m)	369(w)	642(m)	358(w)
10.	$[(\mathrm{Ph.O})\mathrm{P}(\mathrm{S})\mathrm{S}_2]\mathrm{SnCl}_2$	1051(s)	822(s)	646(s)	643(m)	367(w)	638(m)	360(w)


s = strong, m = medium, w = weak.

V - C NMK Spectral D	ata for $[(\mathbf{KO})\mathbf{F}(\mathbf{S})\mathbf{S}_2]\mathbf{S}\mathbf{n}\mathbf{C}\mathbf{I}_2$
Compound	$\begin{array}{c} \text{Chemical shift } (\delta, \text{ppm}) \\ S_2(S)P(OR) \text{ Carbons} \end{array}$
$[MeO)P(S)S_2]SnCl_2$	$56.52,d,C; {}^{2}J_{P-C} = 24CPS$
$[(EtO)P(S)S_2]SnCl_2$	$68.41,d,C; {}^{2}J_{P-C} = 27CPS$
	$18.13, C_2$
$[(Pr^nO)P(S)S_2]SnCl_2$	$72.90,d,C; {}^{2}J_{P-C} = 30CPS$
	$24.66, C_2 15.48, C_3$.
$[(Pr^iO)\ P(S)S_2]SnCl_2$	$68.79,d,C; {}^{2}J_{P-C} = 30CPS$
	$24.83,C_2$
$[(Bu^nO)P(S)S_2]SnCl_2$	$69.01,d,C; {}^{2}J_{P-C} = 27CPS$
	$35.29,C_2$
	$22.17,C_{3}$
	$18.91, C_4$
$[(Bu^sO)P(S)S_2]SnCl_2$	$72.89,d,C_2; {}^2J_{P-C} = 21CPS$
	$36.61,\mathrm{C}_3$
	$15.12,C_4$
$[(Bu^1O)P(S)S_2]SnCl_2$	$73.27,d,C; {}^{2}J_{P-C} = 24CPS$
	$30.12, C_2$
	$22.04, C_3$
$[(Am^1O)P(S)S_2]SnCl_2$	$63.78,d,C; {}^{2}J_{P-C} = 33CPS$
	$42.42,C_2$
	$27.73, C_3$
	$25.62, C_4$
$[(C.h.O)P(S)S_2]SnCl_2$	$73.28,d,C; {}^{2}J_{P-C} = 354CPS$
	$33.85, C_{2,6}$
	$29.93, C_{3,5}$
	$29.01, C_4$
$[(Ph.O)P(S)S_2]SnCl_2$	$161.5,d,C; {}^{2}J_{P-C} = 450CPS$
	$119.40, C_{2,6}$
	$134.50, C_{3,5}$
	$Compound \\ [MeO)P(S)S_2]SnCl_2 \\ [(EtO)P(S)S_2]SnCl_2 \\ [(Pr^nO)P(S)S_2]SnCl_2 \\ [(Pr^iO) P(S)S_2]SnCl_2 \\ [(Bu^nO)P(S)S_2]SnCl_2 \\ [(Bu^nO)P(S)$

TABLE V ¹³C NMR Spectral Data for [(RO)P(S)S₂]SnCl₂

95.16–97.14 ppm is obtained. In 119 Sn NMR spectra, the 119 Sn, NMR chemical shifts of all of the compounds have been observed in the range 251–268 ppm. These 119 Sn NMR chemical shifts suggest that in compound numbers 1–10, the tin(IV) is four coordinated. The NMR spectral data are summarized in Tables V and VI. The tentative structure of these derivatives are shown in Figure 1.

125.7,C₄

FIGURE 1 Structure of $[(RO)P(S)S_2]SnCl$.

	,		
		Chemical	shift (δ, ppm)
S. no.	Compound	³¹ P NMR	¹¹⁹ Sn NMR
1.	$[MeO)P(S)S_2]SnCl_2$	95.16	252
2.	$[(EtO)P(S)S_2]SnCl_2$	96.02	254
3.	$[(Pr^nO)P(S)S_2]SnCl_2$	96.18	251
4.	$[(Pr^iO) P(S)S_2]SnCl_2$	96.28	253
5.	$[(Bu^nO)P(S)S_2]SnCl_2 \\$	97.02	258
6.	$[(Bu^sO)P(S)S_2]SnCl_2 \\$	96.48	255
7.	$[(Bu^iO)P(S)S_2]SnCl_2$	96.42	260
8.	$[(Am^iO)P(S)S_2]SnCl_2$	96.92	262
9.	$[(C.h.O)P(S)S_2]SnCl_2$	97.82	265
10.	$[(Ph.O)P(S)S_2]SnCl_2$	97.94	268

TABLE VI 31 P and 119 Sn NMR Spectral Data for [(RO)P(S)S₂]SnCl₂

$[(RO)P(S)S_2]SnCl_2N_2C_{12}H_8$

All the adducts are yellow solid and soluble in common organic (benzene, dichloromethane, chloroform, etc.) and coordinating (DMF, DMSO, THF, etc.) solvents. In comparison to the parent compound, the adducts are easily soluble in common organic solvents. The adducts are quite stable at room temperature. The molecular weight measurement indicates a monomeric nature of these adducts in a dilute chloroform solution at $45^{\circ}\mathrm{C}$.

IR Spectral Studies

In the IR spectrum, the bands observed in the region $1042-1066~{\rm cm^{-1}}$ and $820-846~{\rm cm^{-1}}$ have been assigned to $\nu[(P)-O-C]$ and $\nu[P-O-(C)]$, respectively. The $\nu[P=S]$ mode may be characterized by the presence of a band in the region $662-650~{\rm cm^{-1}}$, which is quite similar to the ligand's P=S stretchining mode, indicating the bidentate nature of trithiophosphate ligand; this is also showing that their is no interaction of P=S to the metal. The band present in the region $632-648~{\rm cm^{-1}}$ may be ascribed to a $\nu[P-S]$ stretching mode. The appearance of a new band (in comparison to free ligand) in the region $368-388~{\rm cm^{-1}}$ indicates the formation of a $\nu[Sn-S]$ bond. The IR values of $\nu[Sn-Cl]$ bond band found to be lowering in an increase of the coordination number of tin. In six coordinated, Sn(IV) complexes, the $\nu[Sn-Cl]$ bond band was found in the region $275-286~{\rm cm^{-1}}$. The $\nu[Sn-N]$ bond band was found in the region 384-395.The $\nu[C=N]$ bond band was found in the region $1600-1623~{\rm cm^{-1}}$. The IR spectral data are summarized in Table VII.

TABLE VII IR Spectral Data (cm^{-1}) for $[(RO)P(S)S_2]SnCl_2.C_{12}H_8N_2$

S. no.	Compound	ν[(P)—O—C]	ν [P—O—(C)]	ν [P=S]	ν[P–S]	$\nu [\mathrm{Sn-S}]$	$\nu[\mathrm{Sn-\!-\!Cl}]$	$\nu [\mathrm{Sn-N}]$	ν [C=N]
1.	$[\mathrm{MeO})\mathrm{P}(\mathrm{S})\mathrm{S}_{2}]\mathrm{Sn}\mathrm{Cl}_{2}.\mathrm{C}_{12}\mathrm{H}_{8}\mathrm{N}_{2}$	1050(s)	820(s)	658(s)	632(m)	368(w)	275(w)	384(w)	1600(s)
2	$[(\mathrm{EtO})\mathrm{P(S)S_2}]\mathrm{SnCl_2}.\mathrm{C_{12}H_8N_2}$	1052(s)	824(s)	654(s)	636(m)	372(w)	278(w)	386(w)	1602(s)
33	$[(Pr^nO)P(S)S_2]SnCl_2.C_{12}H_8N_2$	1048(s)	827(s)	650(s)	639(m)	374(w)	276(w)	390(w)	1615(s)
4.	$[(\mathrm{Pr^iO})\mathrm{P(S)S_2]SnCl_2.C_{12}H_8N_2}$	1042(s)	825(s)	661(s)	637(m)	370(w)	279(w)	388(w)	1610(s)
5.	$[(\mathrm{Bu^nO})\mathrm{P}(\mathrm{S})\mathrm{S}_2]\mathrm{SnCl}_2.\mathrm{C}_{12}\mathrm{H}_8\mathrm{N}_2$	1056(s)	834(s)	659(s)	645(m)	379(w)	277(w)	393(w)	1619(s)
.9	$[(\mathrm{Bu^sO})\mathrm{P(S)S_2}]\mathrm{SnCl_2}.\mathrm{C_{12}H_8N_2}$	1046(s)	828(s)	658(s)	638(m)	375(w)	274(w)	389(w)	1614(s)
7.	$[(\mathrm{Bu^iO})\mathrm{P}(\mathrm{S})\mathrm{S}_2]\mathrm{SnCl}_2.\mathrm{C}_{12}\mathrm{H}_8\mathrm{N}_2$	1051(s)	830(s)	662(s)	641(m)	376(w)	279(w)	391(w)	1618(s)
œ	$[(\mathrm{Am^iO})\mathrm{P(S)S_2}]\mathrm{SnCl_2}.\mathrm{C_{12}H_8N_2}$	1066(s)	846(s)	661(s)	648(m)	388(w)	282(w)	393(w)	1623(s)
9.	$[(\mathrm{C.h.O})\mathrm{P(S)S}_{2}]\mathrm{SnCl}_{2}.\mathrm{C}_{12}\mathrm{H}_{8}\mathrm{N}_{2}$	1062(s)	842(s)	656(s)	646(m)	385(w)	284(w)	395(w)	1620(s)
10.	$[({\rm Ph.O}){\rm P(S)S_2]SnCl_2.C_{12}H_8N_2}$	1058(s)	841(s)	(s)229	640(m)	380(w)	286(w)	387(w)	1617(s)

s = strong, m = medium, w = weak.

TABLE VIII $\,^{13}C$ NMR Spectral Data for $[(RO)P(S)S_2]SnCl_2.C_{12}H_8N_2$

		Chemica	$l ext{ shift } (\delta, ext{ppm})$
S. no.	Compound	S ₂ (S)P(OR) Carbons	C ₁₂ H ₈ N ₂ Carbons
1.	$[\mathrm{MeO})\mathrm{P(S)S_2}]\mathrm{SnCl_2}.\mathrm{C_{12}H_8N_2}$	$53.59,d,C;$ $^{2}J_{P-C}=26cps$	132.24, C ₂ , 129.48 C ₃ 124.82, C ₄ , 130.18, C ₅ 154.24 C ₆
2.	$[(EtO)P(S)S_2]SnCl_2.C_{12}H_8N_2$	$54.58,d,C;$ $^2J_{P-C}=26cps$	132.45,C ₂ , 129.56,C ₃ 124.94,C ₄ , 129.56,C ₅
3.	$[(Pr^nO)P(S)S_2]SnCl_2.C_{12}H_8N_2$	$16.49, C_2$ 71.89,d,C; $^2J_{P-C} = 90cps$ $25.68, C_2$	152.42, C ₆ 134.44,C ₂ , 124.52, C ₃ , 121.12 C ₄ , 127.29, C ₅ 149.82, C ₆
4.	$[(Pr^iO)\ P(S)S_2]SnCl_2.C_{12}H_8N_2$	$12.46, C_3$ 70.98,d,C; $^2J_{P-C} = 63cps$ $24.70, C_2$	$131.62, C_2, 129.84, C_3 \\ 124.85 C_4, 130.45 C_5 \\ 157.62 C_6$
5.	$[(Bu^nO)P(S)S_2]SnCl_2.C_{12}H_8N_2$	$13.49, C_3$ 72.28,d,C; $^2J_{P-C} = 16cps$ $33.16, C_2$ $12.15, C_3$	$130.92, C_2, 130.10, C_3, \\ 126.18, C_4, 129.80, C_5 \\ 152.86 \ C_6,$
6.	$[(Bu^sO)P(S)S_2]SnCl_2.C_{12}H_8N_2$	$16.26, C_4$ 71.82,d,C; $^2J_{P-C} = 18cps$ $32.24, C_2$	130.65,C ₂ , 129.28, C ₃ 124.84, C ₄ , 132.88, C ₅ 154.28, C ₆
7.	$[(Bu^iO)P(S)S_2]SnCl_2.C_{12}H_8N_2$	$\begin{aligned} &14.09, C_3\\ &15.62, C_4\\ &72.28,d,C;\\ &^2J_{P-C}=16cps\\ &31.54, C_2 \end{aligned}$	134.60,C ₂ , 129.81, C ₃ 125.63, C ₃ , 130.45, C ₅ 152.28, C ₆
8.	$[(Am^iO)P(S)S_2]SnCl_2,C_{12}H_8N_2$	$\begin{aligned} &13.21,C_3\\ &66.99,d,C;\\ &^2J_{P-C}=24cps\\ &42.54,C_2\\ &26.18,C_3 \end{aligned}$	$135.82, C_2, 126.23, C_3$ $123.84, C_4, 129.26, C_5$ $149.9 C_6$
9.	$[(C.h.O)P(S)S_2]SnCl_2.C_{12}H_8N_2$	$24.89, C_4$ $76.91,d,C;$ $^2J_{P-C} = 342cps$ $32.80, C_{2.6}$ $25.42, C_{3.5}$	136.84, C ₂ , 127.42, C ₃ , 126.28, C ₄ , 130.20, C ₅ 152.48, C ₆ ,
10.	$[(Ph,O)P(S)S_2]SnCl_2,C_{12}H_8N_2$	$26.92, C_4$ 159.60,d,C; $^2J_{P-C} = 438cps$ $116.41,C_{2.6}$ $127.72, C_{3.5}$ $118.84,, C_4$	$137.62, C_2, 127.52, C_3, \\ 124.46, C_4, 129.40, C_5 \\ 150.90 C_6$

		Chemical s	$\mathrm{hift}\ (\delta,\mathrm{ppm})$
S. no.	Compound	³¹ P NMR	¹¹⁹ Sn NMR
1.	$[MeO)P(S)S_2]SnCl_2.C_{12}H_8N_2$	97.81	272
2.	$[(EtO)P(S)S_2]SnCl_2,C_{12}H_8N_2$	97.84	271
3.	$[(Pr^nO)P(S)S_2]SnCl_2.C_{12}H_8N_2$	97.86	274
4.	$[(Pr^{i}O) P(S)S_{2}]SnCl_{2}C_{12}H_{8}N_{2}$	97.85	273
5.	$[(Bu^nO)P(S)S_2]SnCl_2.C_{12}H_8N_2$	97.94	278
6.	$[(Bu^{s}O)P(S)S_{2}]SnCl_{2}C_{12}H_{8}N_{2}$	97.98	276
7.	$[(Bu^{i}O)P(S)S_{2}]SnCl_{2}.C_{12}H_{8}N_{2}$	98.10	277
8.	$[(Am^{i}O)P(S)S_{2}]SnCl_{2}.C_{12}H_{8}N_{2}$	99.28	280
9.	$[(C.h.O)P(S)S_2]SnCl_2.C_{12}H_8N_2$	99.29	282
10.	$[(Ph.O)P(S)S_2]SnCl_2.C_{12}H_8N_2$	99.49	285

TABLE IX ^{31}P and ^{119}Sn NMR Spectral Data for $[(RO)P(S)S_2]SnCl_2.C_{12}H_8N_2$

NMR Spectral Studies

The ¹³C NMR Spectra, of the adducts is quite similar to the parental compounds—only a slight difference has been found. The ¹³C resonance for the carbon atom of the P–O–C group appears as a doublet due to coupling with ³¹P nuclei. In the proton-decoupled ³¹P NMR spectra, only one resonance for each compound in the range 97.81–99.49 ppm is obtained. In ¹¹⁹Sn NMR spectra, the ¹¹⁹Sn NMR chemical shifts of all the adducts have been observed in the range 277–285 ppm. Their ¹¹⁹Sn NMR chemical shifts and IR spectral data suggest that in these adducts the tin(IV) is six coordinated. The NMR spectral data are summarized in Tables VIII and IX. The tentative structure of these adducts is shown in Figure 2.

FIGURE 2 Structure of [(RO)P(S)S₂]SnCl₂.C₁₂H₈N₂.

TABLE X IR Spectral Data (cm^{-1}) for $[(RO)P(S)S_2]SnCl_2.C_{10}H_8N_2$

S. no.	Compound	ν[(P)—O—C]	ν[P–0–(C)]	ν[P=S]	ν[P–S]	ν[Sn–S]	ν [Sn—Cl]	ν[Sn–N]	ν [C=N]
1	$[({ m MeO}){ m P(S)S_2}]{ m SnCl_2.C_{10}H_8N_2}$	1048(s)	824(s)	659(s)	636(s)	372(w)	282(w)	388(w)	1610(s)
2	$[(\mathrm{EtO})\mathrm{P(S)S}_2]\mathrm{SnCl}_2.\mathrm{C}_{10}\mathrm{H}_8\mathrm{N}_2$	1050(s)	826(s)	652(s)	639(s)	374(w)	281(w)	390(w)	1612(s)
33	$[(\mathrm{Pr^nO})\mathrm{P(S)S_2}]\mathrm{SnCl_2}.\mathrm{C_{10}H_8N_2}$	1052(s)	829(s)	656(s)	641(s)	378(w)	284(w)	393(w)	1618(s)
4.	$[(\mathrm{Pr^iO})\mathrm{P(S)S_2}]\mathrm{SnCl_2.C_{10}H_8N_2}$	1046(s)	823(s)	655(s)	840(s)	375(w)	283(w)	391(w)	1613(s)
5.	$[(Bu^nO)P(S)S_2]SnCl_2.C_{10}H_8N_2$	1059(s)	837(s)	657(s)	652(s)	382(w)	285(w)	394(w)	1630(s)
9.	$[(\mathrm{Bu^sO})\mathrm{P}(\mathrm{S})\mathrm{S}_2]\mathrm{SnCl}_2.\mathrm{C}_{10}\mathrm{H}_8\mathrm{N}_2$	1056(s)	833(s)	659(s)	648(s)	379(w)	288(w)	389(w)	1625(s)
7.	$[(\mathrm{Bu^iO})\mathrm{P}(\mathrm{S})\mathrm{S}_2]\mathrm{SnCl}_2.\mathrm{C}_{10}\mathrm{H}_8\mathrm{N}_2$	1058(s)	835(s)	661(s)	651(s)	381(w)	286(w)	392(w)	1628(s)
80	$[(\mathrm{Am^iO})\mathrm{P(S)S_2}]\mathrm{SnCl_2}.\mathrm{C_{10}H_8N_2}$	1068(s)	856(s)	(s)099	655(s)	384(w)	290(w)	396(w)	1638(s)
9.	$[(\mathrm{C.h.O})\mathrm{P(S)S_2}]\mathrm{SnCl_2.C_{10}H_8N_2}$	1064(s)	854(s)	6654(s)	654(s)	383(w)	295(w)	395(w)	1635(s)
10.	$[(\mathrm{Ph.O})\mathrm{P(S)S_2}]\mathrm{SnCl}_2.\mathrm{C}_{10}\mathrm{H}_8\mathrm{N}_2$	1057(s)	848(s)	653(s)	649(s)	376(w)	298(w)	387(w)	1632(s)

s = strong, m = medium, w = weak.

TABLE XI ^{13}C NMR Spectral Data for $[(RO)P(S)S_2]SnCl_2.C_{10}H_8N_2$

		Chemica	l shift (δ, ppm)
S. no.	Compound	S ₂ (S)P(OR) Carbons	$ m C_{10}H_{8}N_{2}$ Carbons
1.	$[\mathrm{MeO})\mathrm{P(S)S_2}]\mathrm{SnCl_2}.\mathrm{C_{10}H_8N_2}$	$54.59,d,C;$ $^{2}J_{P-C}=26cps$	146.58,C ₂ , 122.24, C ₃ 119.89, C ₄ , 136.52, C ₅
2.	$[(EtO)P(S)S_2]SnCl_2, C_{10}H_8N_2$	$54.68, d, C;$ $^2\mathrm{J}_{\mathrm{P-C}} = 26\mathrm{cps}$	151.86, C ₆ , 146.89, C ₂ , 122.88, C ₃ 120.42, C ₄ , 126.29, C ₅
3.	$[(Pr^nO)P(S)S_2]SnCl_2.C_{10}H_8N_2$	$16.50, C_2$ 71.98,d,C; $^2J_{P-C} = 90cps$ $25.86, C_2$	$ \begin{aligned} &152.68, C_6\\ &147.96, C_2, 123.98, C_3\\ &120.62, C_4, 134.68, C_5\\ &153.42, C_6 \end{aligned} $
4.	$[(Pr^iO)\;P(S)S_2]SnCl_2.C_{10}H_8N_2$	$12.64, C_3$ 70.96,d,C; $^2J_{P-C} = 63cps$ $24.72, C_2$	$148.52, C_2, 123.62, C_3 \\ 120.28, C_4, 137.43, C_5 \\ 153.84, C_6$
5.	$[(Bu^nO)P(S)S_2]SnCl_2.C_{10}H_8N_2$	$13.48, C_3$ 72.29,d,C; $^2J_{P-C} = 16cps$ $33.61, C_2$	$147.48, \mathrm{C}_2, 123.96, \mathrm{C}_3$ $121.48, \mathrm{C}_4, 137.64, \mathrm{C}_5$ $153.54, \mathrm{C}_6$
6.	$[(Bu^sO)P(S)S_2]SnCl_2,C_{10}H_8N_2$	$12.51, C_3$ $16.62, C_4$ $71.28,d,C;$ ${}^2J_{P-C} = 18cps$ $32.42, C_2$	148.68, C ₂ , 124.48, C ₃ 121.62, C ₄ , 137.80, C ₅ 154.64, C ₆
7.	$[(Bu^iO)P(S)S_2]SnCl_2.C_{10}H_8N_2$	$14.19, C_3$ $15.26, C_4$ $72.85,d,C;$ ${}^2J_{P-C} = 16cps$ $31.45, C_2$	$148.28, C_2, 123.24, C_3 \\ 122.48, C_4, 137.24, C_5 \\ 154.55, C_6$
8.	$[(Am^iO)P(S)S_2]SnCl_2.C_{10}H_8N_2$	$\begin{array}{c} 13.28, C_3 \\ 66.67,d,C; \\ {}^2J_{P-C} = 24cps \\ 42.58, C_2 \\ 26.81, C_3 \end{array}$	$149.29, C_2, 125.46, C_3 \\ 121.58, C_4, 138.44, C_5 \\ 154.14, C_6$
9.	$[(C.h.O)P(S)S_2]SnCl_2,C_{10}H_8N_2$	$\begin{array}{l} 24.90, C_4 \\ 76.94,d,C; \\ {}^2J_{P-C} = 342cps \\ 32.84, C_{2.6} \\ 25.49, C_{3.5} \end{array}$	$150.80, C_2, 127.22, C_3$ $124.18, C_4, 139.40, C_5$ $157.18, C_6$
10.	$[(Ph.O)P(S)S_2]SnCl_2.C_{10}H_8N_2$	$26.95, C_4$ 159.80, d, C; $^2J_{P-C} = 438cps$ $116.49, C_{2.6}$ $127.78, C_{3.5}$ $118.85, C_4$	$149.98, \mathrm{C}_2, 124.94, \mathrm{C}_3$ $122.78, \mathrm{C}_4, 137.68, \mathrm{C}_5$ $155.60, \mathrm{C}_6$

$[(RO)P(S)S_2]SnCl_2N_2C_{10}H_8$

The IR spectra of the adducts (21–30) have been recorded in the 4000–200 cm⁻¹ region. The bands observed in the region 1048–1068 and 823–856 cm⁻¹ have been assigned to $\nu[(P)-O-C]$ and $\nu[P-O-(C)]$, respectively. The mode $\nu[P=S]$ may be characterized by the presence of a band in the 660–652 cm⁻¹ region, indicating the bidentate nature of trithiophosphate ligand. The band present in the 636–655 region may be ascribed to a $\nu[P-S]$ strecthing mode. The appearance of a new band (in comparison to a free ligand) in the 372–384 cm⁻¹ region indicates the formation of a $\nu[Sn-S]$ bond. The IR values of a $\nu[Sn-Cl]$ bond band found to be lowering in an increase of the coordination number of tin. In six coordinated Sn(IV) complexes, the $\nu[Sn-Cl]$ bond band was found in the 281–298 cm⁻¹ region. The $\nu[Sn-N]$ bond band was found in the 388–396 cm⁻¹ region. The $\nu[C=N]$ bond band was found in the 1610–1638 cm⁻¹ region. The IR spectral data are summarized in Table X.

NMR Spectral Studies

The ¹³C NMR Spectra of the adducts is quite similar to the parental compounds; only a slight difference has been found. The ¹³C resonance for the carbon atom of the P—O—C group appears as a doublet due to coupling with ³¹P nuclei. In the proton-decoupled ³¹P NMR spectra, only one resonance for each compound in the range 96.81–98.49 ppm is obtained. In ¹¹⁹Sn NMR spectra, the ¹¹⁹Sn NMR chemical shifts of all the adducts has been observed in the range 270–284 ppm. Their

TABLE XII ^{31}P and ^{119}Sn NMR Spectral Data for $[(RO)P(S)S_2]SnCl_2.C_{10}H_8N_2$

		Chemical	shift (δ, ppm)
S. no.	Compound	³¹ P NMR	¹¹⁹ Sn NMR
1.	$[MeO)P(S)S_2]SnCl_2.C_{10}H_8N_2$	96.81	270
2.	$[(EtO)P(S)S_2]SnCl_2.C_{10}H_8N_2$	96.84	269
3.	$[(Pr^{n}O)P(S)S_{2}]SnCl_{2}.C_{10}H_{8}N_{2}$	96.86	272
4.	$[(Pr^{i}O) P(S)S_{2}]SnCl_{2} C_{10}H_{8}N_{2}$	96.85	271
5.	$[(Bu^nO)P(S)S_2]SnCl_2C_{10}H_8N_2$	96.94	275
6.	$[(Bu^sO)P(S)S_2]SnCl_2.C_{10}H_8N_2$	96.98	274
7.	$[(Bu^iO)P(S)S_2]SnCl_2.C_{10}H_8N_2$	97.10	276
8.	$[(Am^{i}O)P(S)S_{2}]SnCl_{2}C_{10}H_{8}N_{2}$	98.28	279
9.	$[(C.h.O)P(S)S_2]SnCl_2 C_{10}H_8N_2$	98.29	281
10.	$[(Ph.O)P(S)S_2]SnCl_2.C_{10}H_8N_2$	98.49	284

FIGURE 3 Structure of [(RO)P(S)S₂]SnCl₂C₁₀H₅N₂.

¹¹⁹Sn NMR chemical shifts and IR spectral data suggest that in these adducts the tin(IV) is six coordinated. All of the NMR spectral data are summarized in Tables XI and XII. The tentative structure of these adducts is shown in Figure 3.

REFERENCES

- [1] R. Verma, V. D. Gupta, and R. C. Mehrotra, Nat. Acad. Sci. Lett., 2, 130 (1979).
- [2] S. K. Saini, V. D. Gupta, and R. C. Mehrotra, *Inorg. Nucl. Chem. Lett.*, 14, 109 (1978).
- [3] S. K. Pandey, G. Srivastava, and R. C. Mehrotra, Ind. J. Chem., 29A, 339 (1990).
- [4] R. Ratnan, G. Srivastava, and R. C. Mehrotra, Inorg. Chem. Rev., 161, 253 (1989).
- [5] R. C. Mehrotra, G. Srivastava, and H. P. S. Chouhan, Coord. Chem. Rev., 55, 207 (1984).
- [6] H. C. Clark, V. K. Jain, R. C. Mehrotra, B. P. Singh, G. Srivastava, T. Birchal, et al. J. Organomet. Chem., 279, 385 (1985).
- [7] B. P. Singh, G. Srivastava, and R. C. Mehrotra, Synth. React. Inorg. Met -Org. Chem., 13, 963 (1983).
- [8] V. I. Derybin Tr. Vses, Nanch. Issl. Inst. Khlo., 28, 86 (1974).
- [9] S. Kishino, A. Shitamatsu, and K. Shiokava, Japan 7600, 179 (C1 A01Nl; C071) (1976).
- [10] N. M. Kcxhenvikova and V. S. Mikhailov, Khim. Sredstva Zashch Rast., 5, 23 (1975).
- [11] F. Goro and N. Koichl, Mokuzai Kenya, 32, 15 (1964). Chem. Asser., 65, 6221 (1916).
- [12] K. Kirschbaum, L. Scennighausen, E. Gesing, B. Krebs, G. Z. Henke, and B. Natur-forch, Chem. Sci., 45, 245 (1990).
- [13] A. I. Vogel, Textbook of Quantitative Analysis, London: ELBS and Longman Group Ltd. (1978).